

DARPA Meta-Materials

Workshop September 29, 2000 Greenbelt, MD

WIRELESS POWER TRANSMISSION RECTENNAS

Breakthrough Technologies Required

- Controlled Surface Impedances
 - Materials that conform to non-flat surfaces but maintain specified electrical performance i.e., dielectric constant, loss factors
- Basic Diode Development & Evolution
 - Long-term development in fabrication and micro-device technologies such as GaAs and GaNitride
 - Power and efficiency
 - Watts/device
 - >85% efficiencies
- Monothlic fabrication of Embedded "systems on a chip"
 - Silicon carbide-based
 - Integral rectenna arrays and transmitting arrays
 - Require self-biasing networks
 - Power Relaying opportunities
 - Limited relaying
 - Basic modulation of power wave for comm/signaling

Other Collaborations and Opportunities

- Teamed with ESLI, San Diego
 - Proposal in development for the Gossamer NRA
 - Microtruss for lightweight airborne/spaceborne power receiver applications
 - Integrating rectennas with carbon fiber
 - CETDP "Lightweight Deployable Lens Antenna"
 - Ultralight "Microtruss Composite" material
 - Compressibility and resilience for storage and unfurling
- Other Teaming
 - Microwave Sciences/ESLI
 - RF Sail for Advanced Propulsion
 - NASA Langley
 - Rectennas for actuator applications
 - Conformable I.e., "smart skins"

Magnetoelectric Materials

Magnetoelectric Medium is a medium in which there exist a linear relationship between an electric field and the medium's magnetic polarization and between a magnetic field and the medium's electric polarization. :

$$\mathbf{D}(\omega) = \varepsilon_0 \mathbf{E}(\omega) + \mathbf{P}(\omega) = \varepsilon_0 \mathbf{E}(\omega) + \chi_{(e)} \cdot \mathbf{E}(\omega) + \chi_{(em)} \cdot \mathbf{B}(\omega)$$

$$\mathbf{H}(\omega) = \mu_{\overline{0}}^{-1} \mathbf{B}(\omega) - \mathbf{M}(\omega) = \mu_{\overline{0}}^{-1} \mathbf{B}(\omega) - \chi_{(me)} \mathbf{B}(\omega) - \chi_{(me)} \mathbf{E}(\omega)$$

Where, ε_0 and μ_0 are the permittivity and the permeability of free space

 $\mathbf{D}(\omega)$ and $\mathbf{H}(\omega)$ are components of the electromagnetic induction field phasor

 $\mathbf{E}(\omega)$ and $\mathbf{B}(\omega)$ are components of the electromagnetic primitive field phasor.

 $P(\omega)$ and $M(\omega)$ are the polarization magnetization phasors.

 $\chi_{(e)}$ and $\chi_{(m)}$ are the electric and magnetic susceptibility tensors.

 $\chi_{(me)}$ and $\chi_{(em)}$ are the **magnetoelectric** and the **electromagnetic** susceptibility tensors.

Magnetoelectric Materials

Magnetoelectric Materials

- Design and Development of Materials
 - Theory of Magnetoelectric (ME) effect
 - Fabrication of thin-film materials
 - Testing (cryogenically as well as R.T.)
- Integration to Monolithic Fabrication Processes
 - Processing and ME materials compatibility
 - Processing, thickness examination w.r.t. ME susceptibility tensor orientation
 - Theory examination
- Develop Proof-of-concept Device and Application
 - Device modeling and simulation for Long-term device fabrication
 - Power (sensing) and efficiency
 - (1-5) Watts/device
 - <2.0 volt/60,000nT

